14 research outputs found

    Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF

    Get PDF
    The decomposition mechanism of hot liquid nitromethane at various compressions was studied using reactive force field (ReaxFF) molecular dynamics simulations. A competition between two different initial thermal decomposition schemes is observed, depending on compression. At low densities, unimolecular C–N bond cleavage is the dominant route, producing CH_3 and NO_2 fragments. As density and pressure rise approaching the Chapman–Jouget detonation conditions (~30% compression, >2500 K) the dominant mechanism switches to the formation of the CH_(3)NO fragment via H-transfer and/or N–O bond rupture. The change in the decomposition mechanism of hot liquid NM leads to a different kinetic and energetic behavior, as well as products distribution. The calculated density dependence of the enthalpy change correlates with the change in initial decomposition reaction mechanism. It can be used as a convenient and useful global parameter for the detection of reaction dynamics. Atomic averaged local diffusion coefficients are shown to be sensitive to the reactions dynamics, and can be used to distinguish between time periods where chemical reactions occur and diffusion-dominated, nonreactive time periods

    Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms

    Get PDF
    Activation energy for the decomposition of explosives is a crucial parameter of performance. The dramatic suppression of activation energy in condensed phase decomposition of nitroaromatic explosives has been an unresolved issue for over a decade. We rationalize the reduction in activation energy as a result of a mechanistic change from unimolecular decomposition in the gas phase to a series of radical bimolecular reactions in the condensed phase. This is in contrast to other classes of explosives, such as nitramines and nitrate esters, whose decomposition proceeds via unimolecular reactions both in the gas and in the condensed phase. The thermal decomposition of a model nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT), is presented as a prime example. Electronic structure and reactive molecular dynamics (ReaxFF-lg) calculations enable to directly probe the condensed phase chemistry under extreme conditions of temperature and pressure, identifying the key bimolecular radical reactions responsible for the low activation route. This study elucidates the origin of the difference between the activation energies in the gas phase (∼62 kcal/mol) and the condensed phase (∼35 kcal/mol) of TNT and identifies the corresponding universal principle. On the basis of these findings, the different reactivities of nitro-based organic explosives are rationalized as an interplay between uni- and bimolecular processes

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Psychology is social: exploring universals in performance capacity and performance style

    No full text
    Our goal in this discussion is to map out a scientifically legitimate and practical path toward internationalizing the social psychology curriculum. Toward developing an appropriate conceptual framework, we distinguish between the study of two different types of performance: performance capacity, how well isolated individuals can perform tasks as determined by<br />their physical characteristics, and performance style, the way things are done through collaborative meaning making. Whereas performance capacity can be explained causally, performance style is best explained through normative accounts. Social psychology has largely approached<br />questions of performance style by applying a reductionist and causal framework. We highlight the alternative approach reflected in the cultural-narrative turn and identify<br />sub-research areas that need to be strengthened in order to internationalize psychology. -- La psicología es social: explorando universales en la capacidad y el estilo del desempeño Nuestro objetivo es proponer un camino científicamente legítimo y práctico hacia la internacionalización<br />del currículo de la psicología social. Al desarrollar una estructura conceptual apropiada, distinguimos entre el estudio de dos tipos de desempeño: la capacidad de desempeño,<br />es decir, cuán bien los individuos aislados pueden llevar a cabo tareas determinadas por sus características físicas, y el estilo de desempeño, es decir, el modo en que las cosas se<br />realizan a partir de tener un significado colaborativo. Mientras que la capacidad de desempeño puede ser explicada causalmente, el estilo de desempeño es mejor explicado a través de justificaciones narrativas. La psicología social se ha aproximado principalmente a las cuestiones del estilo de desempeño aplicando una estructura reduccionista y causal. Destacamos el enfoque alternativo reflejado en el turno cultural-narrativo e identificamos subáreas de investigación que necesitan ser reforzadas para internacionalizar la psicología

    First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from ReaxFF Multiscale Reactive Dynamics Simulations

    No full text
    The reaction kinetics of the thermal decomposition of hot, dense liquid TNT was studied from first-principles-based ReaxFF multiscale reactive dynamics simulation strategy. The decomposition process was followed starting from the initial liquid phase, decomposition to radicals, continuing through formation of carbon-clusters products, and finally to formation of the stable gaseous products. The activation energy of the initial endothermic decomposition rate and the subsequent exothermic reactions were determined as a function of density. Analysis of fragments production in different densities and temperatures is presented. We find that unimolecular C–N bond scission dominates at the lower densities (producing NO_2), whereas dimer formation and decomposition to TNT derivatives and smaller gaseous fragments prevails at higher compressions. At higher densities, enhanced carbon-clustering is observed, while the initial gaseous fragments formation is suppressed. Increasing the temperature speeds up the production of both clusters and gaseous products. The activation energy for the initial decomposition stage of ambient liquid TNT is 36 kcal/mol, close to the measured value (40 kcal/mol). This value is 25 kcal/mol lower than the corresponding gas phase C–N bond scission. Finally, we suggest a simple linear growth kinetic model for describing the clustering process, which provides very good agreement with simulation results

    First-Principles-Based Reaction Kinetics for Decomposition of Hot, Dense Liquid TNT from ReaxFF Multiscale Reactive Dynamics Simulations

    No full text
    The reaction kinetics of the thermal decomposition of hot, dense liquid TNT was studied from first-principles-based ReaxFF multiscale reactive dynamics simulation strategy. The decomposition process was followed starting from the initial liquid phase, decomposition to radicals, continuing through formation of carbon-clusters products, and finally to formation of the stable gaseous products. The activation energy of the initial endothermic decomposition rate and the subsequent exothermic reactions were determined as a function of density. Analysis of fragments production in different densities and temperatures is presented. We find that unimolecular C–N bond scission dominates at the lower densities (producing NO<sub>2</sub>), whereas dimer formation and decomposition to TNT derivatives and smaller gaseous fragments prevails at higher compressions. At higher densities, enhanced carbon-clustering is observed, while the initial gaseous fragments formation is suppressed. Increasing the temperature speeds up the production of both clusters and gaseous products. The activation energy for the initial decomposition stage of ambient liquid TNT is ∼36 kcal/mol, close to the measured value (∼40 kcal/mol). This value is ∼25 kcal/mol lower than the corresponding gas phase C–N bond scission. Finally, we suggest a simple linear growth kinetic model for describing the clustering process, which provides very good agreement with simulation results

    Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms

    No full text
    Activation energy for the decomposition of explosives is a crucial parameter of performance. The dramatic suppression of activation energy in condensed phase decomposition of nitroaromatic explosives has been an unresolved issue for over a decade. We rationalize the reduction in activation energy as a result of a mechanistic change from unimolecular decomposition in the gas phase to a series of radical bimolecular reactions in the condensed phase. This is in contrast to other classes of explosives, such as nitramines and nitrate esters, whose decomposition proceeds via unimolecular reactions both in the gas and in the condensed phase. The thermal decomposition of a model nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT), is presented as a prime example. Electronic structure and reactive molecular dynamics (ReaxFF-<i>lg</i>) calculations enable to directly probe the condensed phase chemistry under extreme conditions of temperature and pressure, identifying the key bimolecular radical reactions responsible for the low activation route. This study elucidates the origin of the difference between the activation energies in the gas phase (∼62 kcal/mol) and the condensed phase (∼35 kcal/mol) of TNT and identifies the corresponding universal principle. On the basis of these findings, the different reactivities of nitro-based organic explosives are rationalized as an interplay between uni- and bimolecular processes
    corecore